Recycling of NdFeB magnets: densification study by spark plasma sintering

Doctorant·e

THONIKUZHIYIL Jefry Samson

Direction de thèse

NOUDEM Jacques (Directeur trice de thèse) BERNSTEIN Pierre (Co-directeur trice de thèse)

Date de la soutenance

18/12/2024 à 14:00

Lieu de la soutenance

Large meeting room, CRISMAT (Building-G), Ensicaen

Rapporteurs de la thèse

BESSAIS LOTFI UNIVERSITE PARIS 12 VAL DE MARNE KOBE SPOMENKA Institut Jozef Stefan

Membres du jurys

BERNSTEIN Pierre, Professeur émérite, Université de Caen Normandie (UCN) BESSAIS LOTFI, , UNIVERSITE PARIS 12 VAL DE MARNE KOBE SPOMENKA, , Institut Jozef Stefan LE BRETON JEAN-MARIE, , Université de Rouen Normandie (URN) NOUDEM Jacques, , Université de Caen Normandie (UCN) RIVOIRARD SOPHIE, Directeur, MagREEsource SCHOENSTEIN FRÉDÉRIC, , UNIVERSITE PARIS 13 PARIS-NORD

Abstract

Scientific community has been focusing on permanent magnets in the past few years for seeking alternate solutions from the so-called the rare-earth crisis. A large volume of Rare-earth Permanent magnets, after consumed, ends as Waste of Electrical and Electronic Equipment (WEEE), which can be treated as secondary resources of Rare-earth permanent magnet as there is high recycling potential for such scrap magnets. Recycling requires two steps: i) the pulverization of the magnets to obtain a powder and ii) sintering this powder to make new magnets. We have used powders produced by two different techniques: the solvo-themal process with ethanol and hydrogen decrepitation. For the solvo-thermal process optimum treatment parameters included 15 ml ethanol, 30 minutes of reaction time, and a temperature of 100°C. The resulting recycled powder exhibited coercivity of 636.6 kA/m and remanence of 0.76 T. Spark Plasma Sintering (SPS) of this recycled powder resulted in 96.2% relative density with a coercivity of 492.26 kA/m and remanence of 0.6 T. Secondly, hydrogen decrepitation (HD) was implemented to the scrap NdFeB magnets. The best recycled powders initially exhibited a coercivity of 374 kA/m and remanence of 0.63 T. After SPS study, 98% relative density could be achieved with slightly improved coercivity and remanence; 445.6 kA/m and 0.75 T, respectively.